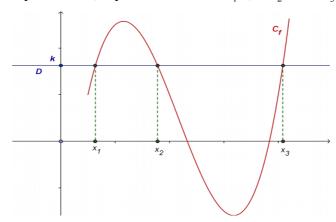
## 1) Equation f(x)=k:

Soit f une fonction définie sur un domaine  $D_f$ . Soit k, un nombre réel.


 $\underline{M\acute{e}thode}$ : On observe la courbe représentative de f.

Résoudre f(x)=k, c'est trouver les antécédents de k qui se lisent sur l'axe des .....

On trace donc la droite horizontale d'équation y=k et on observe les éventuels points d'intersection avec la courbe  $C_f$ . Les solutions se lisent sur l'axe des abscisses.

<u>Remarque</u>: Si  $C_f$  et (D) ne se coupent pas,....

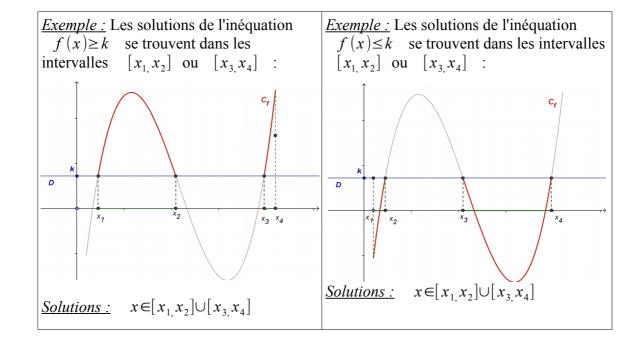
<u>Exemple</u>: Sur l'exemple suivant, il y a 3 solutions  $x_1$ ,  $x_2$  et  $x_3$ :



$$f(x_1) = \dots$$

$$f(x_2) = .....$$

$$f(x_3) = \dots$$


## 2) Inéquation $f(x) \ge k$ (ou $f(x) \le k$ ):

Soit f une fonction définie sur un domaine  $D_f$ . Soit k, un nombre réel.

 $\underline{\textit{M\'ethode}}$ : On observe la courbe représentative de f.

Résoudre f(x) > k, c'est trouver les antécédents des points d'ordonnées plus grandes que k.

On trace donc la droite horizontale d'équation y=k, et on observe les points de  $C_f$  au dessus de (D). Les solutions se lisent sur l'axe des abscisses sous forme d'intervalles.

